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SUMMARY 

The impact of passage rotation on the gasdynamic wave processes is analyzed through a numerical simulation of 
ideal shock-tube flow in a closed rotating-channel containing a gas in an initial state of homentropic solid-body 
rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip 
radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. It is shown that for a fixed 
geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent 
orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends 
primarily on the density ratio across the interface and also the hub-to-tip radius ratio. The nature of the rarefaction 
and shock wave propagation is one-dimensional, although the acoustic waves are diffracted due to the radially 
varying propagation speed. Under conditions of initially homentropic solid-body rotation, a degree of similarity 
exists between rotating and stationary shock-tube flows. This similarity is exploited to arrive at an approximate 
analytical solution to the Riemann problem in a rotating shock-tube. 
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INTRODUCTION 

The goal of this paper is to analyse for shock tube flow the manner in which centripetal and Coriolis 
accelerations brought on by the rotation of a closed channel impact the wave processes. Wave 
processes considered are gasdynamic ones, including shock waves, contact interfaces and rarefaction 
waves but excluding deflagrations and detonations. Herein, shock tube flow is generated by the 
instantaneous rupture of a diaphragm separating a high-pressure gas from a lower-pressure gas of the 
same composition. Gasdynamic waves are initiated and propagated in a closed rotating channel 
containing a gas initially in a state of homentropic solid body rotation. Apart from general interest in 
unsteady compressible flow, understanding the propagation and interaction of gasdynamic waves in a 
rotating channel is useful for pressure exchange wave rotor' applications. For a wave rotor, predictions 
of wave propagation speeds as well as distortion of fluid contact interfaces are required for 
performance assessment. 

The approach taken is to formulate the rotating shock tube problem in terms of the three- 
dimensional unsteady Euler equations in a rotating reference frame. Dimensionless variables are 
introduced, thereby allowing relevant parameters to be identified. The aim is to characterize the 
influence of these parameters on the wave processes. Although the primary concern is with the 
unsteady gasdynamics, the parameters of the problem are carehlly varied in a range applicable to wave 
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rotor designs. To gain full insight into the wave processes in a rotating channel, an approximate 
analytical solution that neglects the vortical structure of the contact interface is also provided. 

The one-dimensional theory of shock tube flow in a closed stationary channel is reviewed by Glass 
and Patterson.’ A classical shock tube consists of a channel initially separated into two parts by a 
diaphragm. Both parts are filled with gas, which is permitted to settle to rest and a uniform state so that 
its temperature becomes uniform throughout the tube, but the pressures in the two parts are arranged to 
be different. When the diaphragm is instantaneously ruptured (in the ideal case), a wave system 
consisting of a shock followed by a fluid contact interface is transmitted into the low-pressure side of 
the channel and a centred rarefaction front propagates into the high-pressure side. This wave system 
can be represented in an (x, t )  plane as shown in Figure 1. The left (L) and right (R) states are 
prescribed at time I = 0 and the waves are illustrated with straight lines emanating from the origin. 
Note that the rarefaction fronts consists of a series of Mach lines along which flow quantities are 
constant but vary from line to line. State (2), which is compressed by the shock wave, and state (3), 
which is formed from the isentropic expansion of the gas in the high-pressure side through the 
rarefaction front, are uniform regions. The fluid velocity and the pressure in the two uniform states are 
identical. However, because of the different formative processes involved, the temperature, density and 
entropy of the two states are different. Therefore these two uniform states are separated by a contact 
interface. For a perfect gas the wave speeds and the properties of the uniform states are readily 
determined from the initial conditions. 

For the case of a rotating shock tube the centripetal and Coriolis accelerations may disrupt the one- 
dimensionality of the classical shock tube flow. To the authors’ knowledge, the question of exactly how 
the wave processes differ from the classical non-rotating shock tube for a given rotational speed has not 
been addressed in the open literature. The primary aim of this paper is to provide the correct framework 
in which to answer this question and to give specific analytic and numerical examples illustrating this 
framework. 

This paper is organized as follows. In the next section the equations of motion written in a rotating 
reference frame are made dimensionless. This results in a clear identification of the relevant parameters 
of the problem. The question of similarity between stationary and rotating shock tube flow is then 
investigated. This investigation leads to an approximate solution for the Riemann problem in a rotating 
shock tube flow. In the following section, numerical solutions of the governing equations for various 
ranges of the problem parameters are presented and discussed. These results suggest criteria for 
estimating the extent to which passage rotation impacts the gasdynamic wave processes. Finally a 
summary of the major findings is given. 

I (L) : ; (3) ; (2) 
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Figure 1. Theoretical x-t diagram of the wave system produced in a classical shock tube flow 
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I t  

Figure 2. Rotating channel geometry illustrating the generation of a wave system by the instantaneous mpture of a diaphragm 

FORMULATION 

The geometric configuration chosen to illustrate the effects of passage rotation consists of a closed 
cylindrical channel (Figure 2) rotating about its length. Viscous and heat conduction contributions are 
neglected. This reduces the mathematical formulation to that of the Euler equations in a rotating 
reference h e .  

The rotating shock tube problem involves a combination of the classic stationary shock tube flow in 
a closed channel and the homentropic flow of a fluid undergoing solid body rotation. Boundary and 
initial conditions for these two flows may be anticipated to define intrinsic scales of the problem. The 
flow is initiated by first imposing hornentropic solid body rotation on the fluid on both sides of the 
diaphragm and then rupturing the diaphragm, thereby generating the wave system. Note that the 
uniform entropy of the gas is different on each side of the diaphragm. Of particular interest here is the 
orientation of the contact interface at specific positions along the length of the closed channel. Thus the 
relevant time scale is the time for waves to propagate axially along the channel. The tip radius is taken 
to be the length scale over which centrifbgal effects are important, while the length of the channel is 
assumed to correspond to the wave propagation length scale. 

Governing equations 

Dimensionless variables are introduced in order to reduce the number of parameters that occur 
explicitly. Consistent with the problem at hand, the equations are made dimensionless by scaling with 
the channel length L for the axial dimension, the tip radius RT for the radial dimension, a density poo, a 
speed of sound a ,  and a reference time Llu,. The uniform thermodynamic reference state ‘00’ is that 
which would exist at the centre of rotation in the low-pressure side of the passage prior to rupturing the 
diaphragm if the height of the channel were to be extended to the centre of rotation. 

Combinations of L, RT, poo and am are selected so that the following variables defined without 
asterisks are dimensionless: 

P* X* t* it* p = -  P* *=T L / a ,  Po0 am PmaL ’ 
w=--, p = -  t=-, 

Let (R, x,  0) denote cylindrical co-ordinates attached to the rotating channel. The x-axis lies along the 
axis of rotation and the rotating channel is restricted by the six walls 0 = 0, 0 = a, R = RHIRT, R = 1, 
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x = 0 and x = 1. The flow is modelled by the unsteady three-dimensional Euler equations3 written in a 
rotating reference frame, 

aP - - + v . (pib) = 0, 
at 

apE - 
__ + v . (pGhw) = 0, 

at 

completed by the perfect gas state relation 

where ha is the rothalpy, 

P 
P 

T = y - ,  

m 

and E is the total energy per unit mass in the rotating frame, 
P E = htR - - 
P 

The free slip wall velocity boundary conditions are 

R = 1, R = R H / R T ,  

e = o ,  e = Q .  
The dimensionless parameter Rn is defined as 

This parameter is a measure of the ratio of the time scale of motion (i.e. transit time) to that of rotation. 
it should be noted that Rn scales only the Coriolis acceleration and is thus unimportant if this 
acceleration is not significant. Another dimensioness parameter is the wheel Mach number based on 
the tip rotational speed, defined as 

This is primarily a measure of the level of radial stratification established by the centripetal 
acceleration. Note that Rn = M&/RT and the parameter LIRT is also implicitly contained in the gradient 
operator. 

The governing equations and boundary conditions clearly show that the relevant parameters of the 
problem to be the wheel Mach number Ma, the length-to-tip radius ratio LIRT, the hub-to-tip radius 
ratio the passage sector angle and the initial conditions. 

Initial conditions 

Steady homentropic (Gs = 0) solid body rotation (ib = 0) is assumed to exist on both sides of the 
diaphragm prior to it being ruptured. Note that the entropy differs on each side of the diaphragm. 
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Under these conditions and using the Gibbs relation 

the equations of motion can be manipulated (see Reference 3 for details) to obtain 
+ 
VhtR = 0. 

Thus the rothalpy is uniform throughout each side of the diaphragm. The initial states on each side of 
the diaphragm may be obtained 

where Pc and TC are the pressure and temperature (i.e. PL, TL, PR, TR) at the reference radius Rc. For 
the present study and also for the sake of simplicity, Rc is taken as the centre of rotation (Rc = 0) on 
each side of the diaphragm. 

Similarity 

We now investigate the similarities between the rotating shock tube flow and the classical stationary 
shock tube. Consider an arbitrary surface moving in the flow region with a certain normal velocity v,i 
relative to the fluid particles instantaneously situated on it. The orientation of the surface is specified at 
any point by the unit normal vector. A natural local co-ordinate system is imagined, based on any 
intrinsic two-dimensional co-ordinate system on the surface. It can be shown that4 

d i l -  A -+ -=as x n = -Vtvs, 
dt (4) 

where 

is the total rate of change taken at a point lying on the surface and also moving in a direction normal to 
the surface. The vector GS is the tangential part of the local angular velocity of the surface and the 
subscript 't' on the gradient operator indicates that only the tangential part of the derivative (i.e. 
derivatives along the surface) is included. Note that equation (4) is a strictly kinematic relation without 
any consideration for the dynamics or thermodynamics of the processes involved in the creation of the 
surface. Hence it may be applied to determine the orientation of the shock, rarefaction fronts and 
contact interface once the local propagation speed of these surfaces is known. 

The rarefaction region consists of a series of surfaces each carrying a discontinuity in the pressure 
gradient and moving with the local speed of sound (i.5 Mach wave with v, = f a ) .  There are no jumps 
in the entropy gradient or the relative vorticity &R = V x G across these  surface^.^ This implies that if 
the flow in the rarefaction region is initially homentropic and undergoing solid body rotation, it will 
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remain so. In addition, the wall boundary conditions require that 

2 = wx(x, t ) S .  

Under these circumstances the Gibbs relation (2) and the equations of motion (la-9 can be used to 
obtain governing equations valid in the rarefaction region: 

aP apwx -+-=o, 
at ax 

awx aha - + + = o ,  
at ax 

aha aha 
aR ae - = 0. -- - 

Equation (5c) implies that the rothalpy is circumferentially and radially uniform. The above equations 
are similar to the governing equations for the non-rotating case with the rothalpy being the analogue of 
the total enthalpy. These equations (5a-c) can be manipulated to obtain 

aJ+ aJ* 
- + (wx fa)- = 0,  at ax 

aJ+ 
f a  - = MAR, 

aR 
where J is the Riemann variable defined as 

2a J* = w x f -  
y - 1 '  

The solutions of equation (6a) correspond to the propagation of waves, but these differ from the non- 
rotating case in that a radial equilibrium condition, equation (6b), has to be satisfied always. Consider a 
J -  wave travelling at a constant radius; according to equation (6), this wave will propagate 
longitudinally at the local speed of sound relative to the fluid particles instantaneously situated on it. 
As the wave arrives at an axial position, its arrival is communicated to the other radial locations 
through a radial equilibrium constraint. Furthermore, since the speed of sound varies radially, equation 
(4) implies that the sonic surfaces or Mach waves will not be radial but inclined at an angle depending 
on the wheel Mach number and the direction of propagation. 

The shock wave is a surface of discontinuity in the Euler limit and is governed by the Rankine- 
Hugoniot jump  relation^.^ These relations supply a complete set of boundary conditions at the surface 
of the shock. For a shock there is no jump in the velocity components tangent to the shock surface. 
This implies that if the flow ahead of the shock is in solid body rotation, the flow behind the shock will 
have no relative velocity components tangent to the shock surface. Consequently, because of the wall 
boundary conditions ($. = 0)  and the initial conditions (2 = 0), the surface of the shock will be 
normal to the axial velocity component (i = iX). This leads to a uniform shock propagation speed as 
can be seen from equation (4) with the condition &/dt = 0. Thus no vorticity will be generated at the 
shock and the flow immediately behind the shock will be in solid body rotation. The rothalpy and axial 
velocity immediately behind the shock are thus uniform. 

The contact interface is also a surface of discontinuity satisfying the Rankine-Hugoniot jump 
conditions in the Euler limit. Across the interface there is no jump in the velocity component normal to 
the surface of the interface and also the pressure is continuous. However, the density and tangential 
velocity may jump by any amount. There is a density gradient at the interface that will combine with 
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the radial pressure gradient due to centripetal acceleration to produce vorticity according to5 
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This vorticity and the ensuing Coriolis acceleration imply a locally three-dimensional flow field near 
the contact interface. The orientation of the interface can be obtained from equation (4) as 

& 
dt 
- = ;[h x (WR x h)] x 2. 

It has been shown that the flow in the rarefaction region is analogous to that in the corresponding 
region of the non-rotating shock tube (equations (5a- c)). Furthermore, the shock wave is normal to the 
flow and propagates with a uniform speed. If the vorticity generation at the contact interface is 
neglected, then there exists similarity between the rotating shock tube flow and the stationary shock 
tube. Note also that for a diaphragm temperature ratio TJTR of 1 : 1 at the centre of rotation the 
pressure and temperature ratios are radially uniform (equations (3)). Hence for TJTR= 1 : 1 there 
exists dynamical similarity between the two flows. Dynamical similarity implies that the local Mach 
numbers in corresponding regions of the flow are equivalent. Thus an approximate solution neglecting 
the vorticity generation at the interface can be obtained for the rotating shock tube problem under the 
aforementioned conditions by solving the one-dimensional stationary shock tube problem at the tip and 
hub radii and relating these two solutions through the constraint of radially uniform axial velocity and 
rothalpy. An outline of the solution procedure follows. 

1. Given the diaphragm pressure and temperature ratios (i.e. P L P ~ ,  TJTR), the wheel Mach number 
and the hub-tip ratio, set up initial conditions at the hub and tip radii using equations (3). 

2. Solve the 1D Riemann problem for non-rotating shock tube flow at the hub and tip radii using 
standard techniques (see e.g. Reference 2). 

3. Set the shock speed as the maximum of that obtained in step 2 at the hub and tip. 
4. If the shock speed from step 3 corresponds to that obtained in step 2 at the tip, then set the axial 

velocity between the shock and the rarefaction to the corresponding value obtained in step 2. 
Also, set the rothalpy between the shock and the contact based on the tip radius. Otherwise set 
everything based on the hub radius. 

5. The propagation speed of the head of the rarefaction front is set to that at the tip radius, while the 
speed of the tail is set to the axial velocity from step 4 minus the sonic speed for the 
corresponding region at the hub as obtained in step 2. 

6. Set the rothalpy between the tail of the rarefaction front and the contract interface equal to a value 
calculated based on the corresponding hub temperature in step 2 and the axial velocity from step 4. 

7. Isentropic relations along with equations (6) can be used to obtain properties across the 
rarefaction region. 

The above procedure mimics the character of the processes in the different regions of the shock tube 
flow. It should be noted that the details of the radial adjustment across the rarefaction region are 
unaccountable in this approach, since in step 7 above the interactions of the expansion fans at the 
various radial sections are ignored. The error produced by neglecting the vorticity generation at the 
interface should be small for short times prior to any interaction of the interface with reflected waves. 
Thus there exists similarity with the stationary shock tube under conditions of radially and 
circumferentially uniform axial velocity, rothalpy and entropy. These conditions are approximately 
satisfied shortly after rupturing the diaphragm. Once the regions of the shock tube flow have been 
delineated as outlined above, a complete solution for the rotating shock tube can be obtained by 
invoking similarity. Approximate solutions obtained by this procedure are compared herein with the 
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computational results obtained by integrating the full three-dimensional Euler equations. This 
comparison should aid in understanding the results. 

Computational scheme 

For this investigation a two-stage Runge-Kutta scheme developed by Chima and Yokota6 was 
applied to solve the Euler equations. This scheme uses explicit time marching along with central 
difference spatial discretization in a boundary-fitted H-mesh. Gasdynamic discontinuities (i.e. shocks 
and interfaces) are treated by means of a second-difference artificial dissipation. This implies that the 
Rankine-Hugoniot jumps associated with a shock or interface are continuous and spread out over a 
number of grid points rather than occurring as discontinuities. The dissipation coefficient was chosen 
so that the shock thickness is about five grid points independently of mesh size. A small amount of 
fourth-difference artificial dissipation is also employed to suppress non-linear instabilities. The formal 
truncation error of this scheme is second-order in space and first-order in time. Although the authors 
are well aware of the shortcomings of the present scheme relative to modem high-resolution schemes, 
it is believed that a well-calibrated artificial dissipation scheme will perform adequately for the range 
of parameters to be investigated. 

To assess the accuracy and fidelity of the simulation, a zero-rotation case was run as a baseline for 
comparison. This is a one-dimensional problem with an exact analytical solution. A Courant number of 
one-half (CFL = 0.5) along with calibrated artifical dissipation parameters was selected. Initial 
conditions consisted of pressure and density ratios of 2 :  1 separating left and right states. Good 

Figure 3. Comparison of numerical and exact solutions to the Riemann problem for shock tube flow. The density and pressure 
ratios are 2 : 1 and the time is t = 0.25 
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comparison between the exact and computed solutions is shown in Figure 3. Based on these results, the 
required spatial and temporal resolutions were determined. A longitudinal spatial resolution of 
Ax 5 0.0066 was set. Further numerical experimentation demonstrated the ability of this scheme to 
adequately capture the essential features (i.e. wave speeds and interactions) pertinent to this 
investigation. The same numerical parameters were employed for all the cases presented. 

RESULTS AND DISCUSSION 

Five cases are presented to illustrate the impact of rotation on the wave processes for shock tube flow in 
a rotating passage. The parameters that are varied for each of the cases are given in Table I. The 
passage sector angle Q, was maintained at a constant value of 4.93" and the diaphragm was initially 
placed midway in the passage (i.e. x=O.5). These parameter ranges reflect possible operating 
conditions for proposed wave rotors being considered for thermodynamic cycle performance 

(b) 1.0.5, shock mfbctlon from right wall 
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(d)  Itla, mfhclul-rmdactlon lront Intuaclkn wlth tho .hock d Mrha 

Figure 4. Four time sequences showing density contours in a meridional plane for various wheel Mach numbers and other 
parameters given in Table I for Case A. The pressure ratio is 2 : I and the temperature ratio is 1 : 1 
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Figure 5. Axial variation in rothalpy and axial velocity at t = 0.25 for wheel Mach numbers of 0.0 and 1.5 and other parameters 
pertaining to Case A. For MO = 1.5 the hub, mean and tip profiles are also shown. The pressure ratio is 2 : 1 and the temperature 

ratio is 1 : 1 

augmenttaion of small gas turbines. The computational mesh for all the cases consisted of 450 nodes in 
the x-direction, 20 nodes in the circumferential direction and 30 nodes in the radial direction, except 
Case E which had a size of 225 x 20 x 30. Increasing the number of mesh points in all three directions 
did not produce any significant differences in the results. 

Table I. Parameters of rotating shock tube problem 

~ ~ ~ ~~~ 

A. Rotational speed 2.0 1 .o 0.934 1.5 0.0, 0.5, 1.0, 1.5 
B. Pressure ratio 4.0, 2.0 1-0 0.934 I .5 0.5 
C. Temperature ratio 2.0 0.5, 1.0, 2.0, 4.0 0.934 1.5 0.5 
D. Hub-tip ratio 2.0 1.0, 4.0 0.5, 0.934 1.5 0.5 
E. Length 2.0 1.0, 4.0 0.934 0.75, 1.5 0.5 
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MO = 1.0 

MO = 0.5 

TI 

HUB 

MO = 0.0 

Figure 6. Meridional distribution of rothalpy in mid-passage at t =  1.0 for various wheel Mach numbers. The pressure ratio is 
2 : 1 and the temperature ratio is 1 : 1 (Case A) 

Case A.  h y i n g  wheel Mach number 

The effects of varying wheel Mach number on the density field are shown in Figure 4 for wheel 
Mach numbers of 0.0, 0.5, 1.0 and 1.5. For each wheel Mach number all other parameters are held 
constant as per Table I. Meridional(0 = 012) projections of the shock, rarefaction fronts and interface 
are illustrated through density contours at four different moments in time. 

Three observations follow from Figure 4. First, the shock, contact interface and rarefaction fronts 
travel faster with increasing wheel Mach number owing to the higher temperature consistent with the 
centrifugal force field and initial conditions. Second, for the zero wheel Mach number (Mo=O) the 
rarefaction fronts propagate along lines of radially constant density as in a centred expansion fan, 
whereas for non-zero wheel Mach numbers the constant density lines in the expansion fan are oblique, 
with the degree of obliquity varying in time as can be seen in a comparison of the Mo = 1.0 condition 
at t = 0.25 and 0.5. This behaviour is compatible with equation (4) in that the sonic surface will tend to 
seek a shape having a uniform propagation speed along the surface (i.e. ?ta = 0). In addition, a normal 
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theta 
(direction of rotation) 

Figure 7. Rothalpy distribution in an axial-circumferential plane at mid-height for t=  1 .O. The pressure ratio is 2 : I and the 
temperature ratio is 1 : 1 

shock with a uniform propagation speed is observed. Third, the largest departure from the non-rotating 
shock tube is the evolving distortion of the interface with increasing wheel Mach number. This is 
consistent with previous discussions concerning vorticity generation at the interface (equation (7)) and 
the evolution of the interface normal vector according to equation (8). The initial1 radial interface 
becomes oblique before any interaction _with the r2flected shock or rarefaction fronts owing to the 
generation of baroclinic vorticity (i.e. (Vplp)  x (Vplp).  Interactions of the shock and rarefaction 
fronts with the interface result in stretching of the interface and at the same time the vorticity 
generation is amplified. For wheel Mach numbers greater than or equal to unity a rapidly growing non- 
planar orientation of the interface is observed after it interacts with the shock and rarefaction fronts. 
This can be better explained by considering the kinematics of stretching and alignment of fluid 
elements comprising the interfa~e.~ The evolution of a fluid element is determined by the local velocity 
gradient tensor, which includes a dilatation term (compression or expansion) and a rotational term 
(vorticity). The combination of these two actions and the wall boundary conditions is responsible for 
this interface orientation. 
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Mo = 0.0 

Figure 8. Meridional distribution of axial velocity at t = 1 .O for various wheel Mach numbers Mo The pressure ratio is 2: I and 
the temperature ratio is 1:l (Case A) 

A more quantitative illustration of the propagation of the shock and rarefaction fronts is shown in 
Figure 5. It can be seen that the rarefaction fronts appear to propagate in a one-dimensional fashion in 
terms of rothalpy and axial velocity fields. One says here ‘appear to propagate’ because the initial 
condition of homentropic solid body rotation constraints the rothalpy and axial velocity fields to be a 
function of only time and axial position away from the contact interface as previously discussed in the 
context of equations (5a-c). The increase in wave propagation speed as the wheel Mach number is 
increased from 0.0 to 1.5 is seen to be significant. This is due mainly to the initial conditions and may 
not have any significant implications for wave rotor applications. 

The structure of the interface distortion is presented more clearly in Figure 6, where surface plots of 
the rothalpy distribution are shown in a meridional plane at mid-passage (0 = W 2 )  for the four wheel 
Mach numbers at t = I .O after the reff ected shock has interacted with the interface. It can be observed 
that the rothalpy is radially uniform except along the interface for non-zero wheel Mach numbers. An 
S-shaped fluid interface with an axially oriented mid-section appears to be developing for non-zero 
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Mo = 1.0 

.Mo = 0.5 

Mo = 0.0 

Figure 9. Axial velocity distribution in an axial-circumferential plane at mid-height for t = 1 .O. The pressure ratio is 2 : 1 and the 
temperature ratio is 1 : I (Case A) 

wheel Mach numbers. The extent of the axially oriented mid-section increases with increasing wheel 
Mach number. Surface plots of the rothalpy distribution in an axial-circumferential plane at mid-height 
(R=(l + R H / R T ) / ~  are shown in Figure 7 for I =  1.0. The plots reveal the extent of interfacial 
distortion in this plane. In addition, for wheel Mach numbers of unity or above a noticeable non-planar 
orientation of the interface exists near the trailing side of the passage. The orientation of the interface is 
consistent with the vorticity production mechanisms and equation (8). 

It appears that the interface seeks a ‘stable’ orientation when viewed in a meridional plane (Figures 
4(d) and 6) as is exhibited for the MO = 1.5 case. Stability here implies that the orientation of the 
interface is stationary to disturbances such as those caused by centripetal acceleration, Coriolis forces 
and interaction with waves. 

To complete the general picture, axial velocity distributions in a meridional plane and an axial- 
circumferential plane are presented in Figures 8 and 9 respectively at t =  1.0. A vortical structure is 
observed at the location of the interface for non-zero wheel Mach numbers. The Orientation of the 
structure is consistent with that of the interface (Figures 6 and 7). A radially uniform axial velocity can 
be observed away from the interface. Thus the velocity field is one-dimensional everywhere except 
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Figure 10. Density contours in a meridional plane for four time sequences illustrating the effect of varying diaphragm pressure 
ratio (Case B). The wheel Mach number is Mo =0.5 

near the interface, where the vortical structure induces tangential and radial velocities. These radial and 
tangential flows represent flow kinetic energy which is not available to the mean flow, so their kinetic 
energy must be considered a contribution to the inefficiency of the process. 

Case B. Varying pressure ratio 

Contour plots of the density field in a meridional plane are presented in Figure 10 at four time 
sequences for different diaphragm pressure ratios with all other parameters held constant as in Table I. 
An additional condition is shown for pressure and temperature ratios of 4.0 : 1 for comparison. Also 
included is a sketch of the density ratio across the interface shortly after rupturing the diaphragm. 
Increasing the diaphragm pressure ratio from 2.0: 1 to 4.0: 1 results in a relatively more distorted 
interface. For the temperature and pressure ratios of 4.0 : 1, although not definitively shown in the 
figures, the orientation of the interface changes direction after interaction with the reflected rarefaction 
fronts. Note also the deceleration of the shock wave at t = 1 .O for PLIPR = 4.0 and TLITR = 1 .O due to 
propagation in a region of higher fluid velocity. 



482 

\ \\\\m\\\\\\\\ Y / 
\ \ \  L. P- 

L. M. LAROSILIERE AND M. MAWID 

(d) k1.0 

Figure 1 1 .  Density contours in a meridional plane for four time sequences illustrating the effect of varying diaphragm 
temperature ratio (Case C). The pressure ratio is 2 : 1 and ,440 = 0.5 

Case C. Varying temperature ratio 

The effect of varying diaphragm temperature ratio at Mo = 0.5 is illustrated in Figure 11 through 
density contours in a meridional plane at various moments in time. Also indicated are the density ratios 
across the interface shortly after rupturing the diaphragm. It can be observed that for temperature ratios 
of 4-0: 1 and 0-5 : 1 the interface is significantly distorted even before interaction with the reflected 
shock. Furthermore, for these same temperature ratios the interface orientation is very non-planar after 
interaction with the reflected shock (t = 1 .O). Thus large density ratios across the interface result in 
significant distortion of the interface. 

Note also that for a temperature ratio of 4.0 : 1 the interface commences to roll over after interaction 
with the rarefaction fronts. This is probably caused by a non-uniform dilatation of the fluid elements 
along the interface. The exact roles of centripetal and Coriolis accelerations in sustaining this interface 
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configuration is not immediately apparent to the authors. In comparison with Case A (Figure 4) and the 
temperature ratio of 0.5 : 1, the orientation of the interface does not appear to be seeking a stable 
configuration for this temperature ratio of 4.0 : 1. It is apparent that for a range of temperature ratios 
above 1 .O the interface does not acquire a stable shape, whereas for temperature ratios of 1.0 or below 
the interface configuration becomes stable. 

Case D. Vaving L/RT 

Figures 12 and 13 illustrate the effect of reducing L/RT through density contours in a meridional 
plane for two different temperature ratios. Recall that the longitudinal co-ordinates of the channels are 
dimensionless in these plots (i.e. x = 0-1). A better grid resolution was employed for the longer-length 
channel, which is why the discontinuities appear to be more smeared for the shorter length. Note that 
the reference time scale (Llu,) is different for these two configurations but the dimensionless times are 
the same. Thus this is a direct comparison of the effect of changing the residence time of a fluid 
element within the passage. 

c \ \\\\mu-\\\\\\ V 
(b) 1-1 .O 

Figure 12. Effect of varying length-to-tip radius ratio for TJTR = 1 .O and PJP, = 2.0 
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Figure 13. Effect of varying length-to-tip radius ratio for TJTR =4.0 and PJPR=Z.O 
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Varying LIRT at constant wheel Mach number changes Re;, which affects the Coriolis term in the 
equations of motion. Thus reducing LIRT should lessen the degree of skewing of the interface as is 
evident in Figures 12 and 13. The effects of reducing LIRT are more pronounced at the higher 
temperature ratio. Note that since the distortion of the interface is partly scaled by RQ, it may be 
possible to infer from Figure 13@) the role of Coriolis forces in the stability of the interface. These 
results suggest that depending on the operating conditions, a shorter length may be better for an 
application where compressed fluid is drawn out at the end of the channel. 

Case E. Varying hub-tip ratio 

The effects of reducing RHIRT are shown in Figures 14 and 15. These figures display the meridional 
distribution of density for two different temperature ratios. It can be observed that increasing the hub- 
tip ratio generates a larger radial stratification, resulting in a non-planar orientation of the interface 
after interaction with the reflected shock. Varying the hub-to-tip radius ratio changes the stratification 
height, resulting in a radially non-uniform baroclinic vorticity generation. Note that for the higher 
temperature ratio the roll-over characteristic of the interface is not evident with the lower hub-to-tip 
ratio. 

(a) 1 4 1 5  

I \ \ \ I \ \  

@) bl.0 

Figwe. 14. Effect of varying hub-to-tip radius ratio for TJTR= 1.0 and P # ~ = 2 . 0  
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(b) 1.1.0 

Figure 15. Effect of varying hub-to-tip radius ratio for TJTR = 4.0 and PLIPR = 2.0 

Comparisons with approximate analytical solution 

Figure 16 compares some of the computational results with the approximate analytical solution 
previously outlined for a time t = 0.25. This figure illustrates the axial variation in rothalpy and axial 
velocity at mid-height for various parameters. The stationary shock tube case (Mo = 0) is included as a 
baseline. At a diaphragm temperature ratio of 4 :  1 there is a large overshoot in the computational 
results at the interface but the resolution of the interface is reasonably sharp. A good match with the 
analytical approximation is observed. This suggests that for an initially homentropic solid body 
rotation the character of the rarefaction and shock waves is not greatly altered by the passage rotation 
and can thus be approximately treated with techniques for one-dimensional stationary shock tube flow 
and the appropriate modifications discussed herein. To satisfy radial equilibrium, a radial adjustment of 
the thermodynamic properties must occur as the waves propagate along the channel. 

CONCLUDING REMARKS 
Some insights into the unsteady wave processes in a closed rotating channel are presented. Analysis of 
the governing equations revealed the dominant parameters controlling the problem. Three-dimensional 
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Figure 16. Comparison of approximate analyt~cal solution with computational (symbols) results at t = 0.25 

numerical results forideal shock tube flow in a closed rotating channel show the influence of these 
parameters on the flow. 

The following conclusions may be drawn concerning the impact of passage rotation on an ideal 
shock tube flow having initial conditions of homentropic solid body rotation on each side of the 
diaphragm. 

1. Centripetal acceleration initiates baroclinic vorticity which creates Coriolis forces, resulting in a 
three-dimensional distortion of the fluid interface. 

2. Subsequent interactions of the interface with shocks or rarefaction fronts dilate the interface and 
at the same time amplify the vorticity at the interface. For a range of diaphragm temperature 
ratios above 1.0 these interactions may result in an unstable interface configuration. 

3. The magnitude of the distortion depends primarily upon the following parameters: the wheel 
Mach number Mn, the hub-tip radius ratio RHIRT and the density ratio across the interface. 

4. For an application where compressed fluid is drawn out at the end of the channel, it may be 
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beneficial to reduce the length-to-tip radius ratio LlR, of the channel so that the interface 
distortion due centripetal and Coriolis accelerations is minimized. 

5.  The shock is normal to the flow and propagates in a one-dimensional fashion. However, the 
rarefaction fronts also exhibit a one-dimensional propagation although the Mach waves are 
diffracted owing to the radially varying temperature. 

For initial conditions other than those of homentropic solid body rotation the above conclusions may 
not hold exactly, i.e. the propagation of the shock and rarefaction fronts may acquire a three- 
dimensional character. It should also be noted that viscous effects were neglected and it is possible that 
they may have an appreciable impact on some of the conclusions drawn here. 
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APPENDIX: NOMENCLATURE 

speed of sound 
unit vector 
total energy per unit mass 
rothalpy 
passage length 
wheel Mach number based on tip radius and a reference speed of sound 
unit normal vector 
pressure 
gas constant 
hub radius 
tip radius 
frequency ratio 
entropy per unit mass 
time 
temperature 
relative velocity vector 

Greek letters 

Y ratio of specific heats 
P density 
a) passage sector angle 

R rotational speed 
c3 dyadic vector product 

relative vorticity vector 

Subscripts 

C centre of rotation 
L left side (high pressure) of diaphragm in shock tube flow 
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R 
R axis of rotation 
0 
00 

right side (low pressure) of diaphragm in shock tube flow 

equilibrium state for initial conditions 
uniform reference state, defined in text 
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